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UNIT AND DIMENSIONS
Unit :
Measurement of any physical quantity is expressed in terms of an
internationally accepted certain basic standard called unit.

* Fundamental Units.

S.No. Physical Quantity SI Unit Symbol 

1 Length Metre m  

2 Mass Kilogram Kg 

3 Time Second S 

4 Electric Current Ampere A 

5 Temperature Kelvin K 

6 Luminous Intensity Candela Cd 

7 Amount of Substance Mole mol 
 * Supplementary Units :

S.No. Physical Quantity SI Unit Symbol 

1 Plane Angle radian r 

2 Solid Angle  Steradian Sr 

 

* Metric Prefixes :

 

S.No. Prefix Sym bol Value 

1 Centi c  10–2 

2  M ili  m   10–3 

3  M icro µ 10–6 

4  Nano n  10–9 

5  Pico p  10–12 

6  K ilo K 103 

7  M ega M  106 
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RECTILINEAR MOTION

Average Velocity  (in an interval) :

vav = v  = <v>  =  
takentimeTotal

ntdisplacemeTotal  = 
t
rr if




Average Speed (in an interval)

Average Speed =  taken timeTotal
travelled distanceTotal

Instantaneous Velocity (at an instant) :

instv


 = 










 t
rlim

0t



Average acceleration (in an interval):

ava


 = t
v




 =  
t
vv if





Instantaneous Acceleration (at an instant):

a


 = dt
vd


 = 
















 t
vlim

0t

Graphs in Uniformly Accelerated Motion along a straight line
(a  0)
 x is a quadratic polynomial in terms of t. Hence x  t graph is a
parabola.

xi

x

 a > 0

t0

xi

x

a < 0

t0

      x-t  graph
 v is a linear polynomial in terms of t. Hence vt graph is a straight line of
slope a.

v

u
a is positive

slo
pe

= a

t0

v

u

a is negative

slope = a

t0



Page # 4

  v-t  graph

 at graph is a horizontal line because a is constant.

a

a
positive
acceleration

t0
a

a

negative
acceleration

0

  a-t  graph

Maxima & Minima

 dx
dy

 = 0  & dx
d









dx
dy

 < 0 at  maximum

and dx
dy

 = 0 & dx
d









dx
dy

 > 0 at minima.

Equations of Motion (for constant acceleration)
(a) v = u + at

(b) s = ut + 
2
1

 at2 s = vt  
2
1

 at2 xf = xi + ut + 
2
1

 at2

(c) v2 = u2  + 2as

(d) s = 
2

)vu( 
 t (e) sn = u + 

2
a

 (2n  1)

For freely falling bodies : (u = 0)
(taking upward direction as positive)
(a) v = – gt

(b) s = –
2
1

 gt2 s = vt  
2
1

 gt2 hf = hi – 
2
1

 gt2

(c) v2 = – 2gs

(d) sn = –
2
g

 (2n  1)
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PROJECTILE MOTION & VECTORS

Time of flight : T = g
sinu2 

Horizontal range : R = 
g

2sinu2 

Maximum height  : H = g2
sinu 22 

Trajectory equation (equation of path) :

y = x tan   – 
22

2

cosu2
gx

 = x tan  (1 – 
R
x

)

Projection on an inclined plane

y

x

 

Up the Incline Down the Incline 

Range 



2

2

cosg
)cos(sinu2  




2

2

cosg
)cos(sinu2  

Time of flight 



cosg
sinu2  




cosg
sinu2  

Angle of projection with 
incline plane for maximum 

range 24



  

24



  

Maximum Range 
)sin1(g

u2


 

)sin1(g
u2


 

RELATIVE MOTION

BAAB vv)BtorespectwithAofvelocity(v




BAAB aa)BtorespectwithAofonaccelerati(a




Relative motion along straight line - ABBA xxx






Page # 6

CROSSING RIVER
A boat or man in a river always moves in the direction of resultant velocity
of velocity of boat (or man) and velocity of river flow.

1. Shortest Time :

   

Velocity along the river,  vx = vR.
Velocity perpendicular to the river, vf = vmR

The net speed is given by   vm = 2
R

2
mR vv 

2. Shortest Path :
velocity along the river,  vx = 0

and velocity perpendicular to river  vy = 2
R

2
mR vv 

The net speed is given by vm = 2
R

2
mR vv 

at an angle of 90º with the river direction.
velocity vy is used only to cross the river,
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therefore time to cross the river, t = 
yv

d
 = 2

R
2
mR vv

d



and velocity vx is zero, therefore, in this case the drift should be zero.
 vR – vmR sin  = 0 or vR = vmR sin 

or  = sin–1 








mR

R

v
v

RAIN PROBLEMS

Rmv


 = Rv


 – mv


or vRm = 2
m

2
R vv 

NEWTON'S LAWS OF MOTION
1. From third law of motion

BAAB FF 

ABF  = Force on A due to B

BAF  = Force on B due to AA

2. From second law of motion

Fx = dt
dPx  = max Fy = 

dt
dPy

 = may Fz = dt
dPz  = maz

5. WEIGHING MACHINE :
A weighing machine does not measure the weight but measures the
force exerted by object on its upper surface.

6. SPRING FORCE xkF



x is displacement of the free end from its natural length or deformation
of the spring where K = spring constant.

7. SPRING PROPERTY K ×  = constant
= Natural length of spring.

8. If spring is cut into two in the ratio m : n then spring constant is given
by

1 = 
nm

m



; 2 = 
nm

.n



     k = k11 = k22
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For series combination of springs      .......
k
1

k
1

k
1

21eq


For parallel combination of spring       keq = k1 + k2 + k3 ............

9. SPRING BALANCE:
It does not measure the weight. t measures the force exerted by the
object at the hook.
Remember :

Vp = 1 2V V
2


aP = 1 2a a
2


11.
21

12

mm
g)mm(a






21

21
mm

gmm2T




12. WEDGE CONSTRAINT:

Components of velocity along perpendicular direction to the contact
plane of the two objects is always equal if there is no deformations
and they remain in contact.
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13. NEWTON’S LAW FOR A SYSTEM

ext 1 1 2 2 3 3F m a m a m a ......   
   

extF 


Net external force on the system.
m1, m2, m3 are the masses of the objects of the system and

1 2 3a ,a ,a
  

are the acceleration of the objects respectively..

14. NEWTON’S LAW FOR NON INERTIAL FRAME :

amFF PseudoalRe




Net sum of real and pseudo force is taken in the resultant force.

a


 = Acceleration of the particle in the non inertial frame

PseudoF


 =  m Framea


(a) Inertial reference frame: Frame of reference moving with con-
stant velocity.
(b) Non-inertial reference frame: A frame of reference moving with
non-zero acceleration.

FRICTION
Friction force is of two types.
(a) Kinetic (b) Static

KINETIC FRICTION : fk = k N
The proportionality constant k is called the coefficient of kinetic friction
and its value depends on the nature of the two surfaces in contact.

STATIC FRICTION :
It exists between the two surfaces when there is tendency of relative mo-
tion but no relative motion along the two contact surfaces.
This means static friction is a variable and self adjusting force.
However it has a maximum value called limiting friction.

fmax = sN
0   fs   fsmax

Fr
ic

tio
n 

Applied Force

sta
tic

 fri
cti

on

f  static maximum

sN kN
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WORK, POWER & ENERGY
WORK DONE BY CONSTANT FORCE :

W = F


 . S


WORK DONE BY MULTIPLE FORCES
F


 = F


1 + F


2 + F


3 + .....

W = [F


] . S


...(i)

W = F


1 . S


 + F


2 . S


 + F


3 . S


+ .....
or W = W1 + W2 + W3 + ..........

WORK DONE BY A VARIABLE FORCE

dW = 
 
F.ds

RELATION BETWEEN MOMENTUM AND KINETIC ENERGY

K = m2
p2

  and   P = Km2   ;  P = linear momentum

POTENTIAL ENERGY

 
2

1

2

1

r

r

U

U
rdFdU


i.e.,
2

1

r
2 1 r

U U F dr W     
 

WrdFU
r

 


CONSERVATIVE FORCES

F= – r
U



WORK-ENERGY THEOREM
WC + WNC + WPS  = K

Modified Form of Work-Energy Theorem
WC = U
WNC + WPS = K + U
WNC + WPS = E
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POWER

The average power ( P  or pav) delivered by an agent is given by P  or

pav = 
t

W

dt
SdFP



  = 

dt
SdF



  = F


 . v


CIRCULAR MOTION

1. Average angular velocity  av = 
12

12

tt 


 = t


2. Instantaneous angular velocity   = dt
d





3. Average angular acceleration  av = 
12

12

tt 


 = t



4. Instantaneous angular acceleration   = dt
d

 =  


d
d

5. Relation between speed and angular velocity    v = r and rv



7. Tangential acceleration (rate of change of speed)

 at = dt
dV

 = r dt
d

 =   dt
dr

8. Radial or normal or centripetal acceleration  ar = 
r

v2
= 2r

9. Total acceleration
 rt aaa


   a = (at

2 + ar
2)1/2    

ra ca

a
ta

v
or


P

O
Where ra t


  and var



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10. Angular acceleration

 
  = dt

d


 (Non-uniform circular motion)  


ACW
Rotation

12. Radius of curvature R = 
a

v2

 = 
F

mv2

If y is a function of x.      i.e. y = f(x)  R = 

2

2

2/32

dx
yd

dx
dy1




















13. Normal reaction of road on a concave bridge

 N = mg cos  + 
r

mv2





N

V
mg

mgcos
concave 
bridge

O

14. Normal reaction on a convex bridge

 N = mg cos  – 
r

mv2



N V

mg

mgcos
convex 
bridge

O



15. Skidding of vehicle on a level road  vsafe  gr

16. Skidding of an object on a rotating platform  max = r/g
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17. Bending of cyclist  tan  = rg
v 2

18. Banking of road without friction  tan  = rg
v 2

19. Banking of road with friction  




tan1
tan

rg
v2

20. Maximum also minimum safe speed on a banked frictional road

Vmax  
2/1

)tan1(
)tan(rg











Vmin  
1/ 2

rg (tan )
(1 tan )

  
   

21. Centrifugal force (pseudo force)  f = m2 r, acts outwards when the
particle itself is taken as a frame.

22. Effect of earths rotation on apparent weight  N = mg – mR2 cos2  ;

where  latitude at a place

23. Various quantities for a critical condition in a vertical loop at different
positions

C

B

P
NA

D
 

O

(1)

×
(2) (3)

   gL4Vmin  gL4Vmin  gL4Vmin 

(for completing the circle)    (for completing the circle)  (for completing the circle)
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24. Conical pendulum :



/////////////

fixed pointor
suspension
O

h
T L

r

mg

T cos 



T cos  = mg
T sin  = m2 r

 Time period =  2
g

cosL

25. Relations amoung angular variables :
0  Initial ang. velocity  = 0 + t

a  or Vt

ar

Or

d ,  or   

(Perpendicular 
to plane of paper 
directed outwards 
for ACW rotation)

  Find angular velocity  = 0t + 
2
1

 t2

  Const. angular acceleration 2 = 0
2 + 2 

  Angular displacement

CENTRE OF MASS
Mass Moment : M


 = m r



CENTRE OF MASS OF A SYSTEM OF 'N' DISCRETE PARTICLES

cmr


 = 
n21

nn2211

m........mm
rm........rmrm






 ;  cmr

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= 








n

1i
i

n

1i
ii

m

rm


 cmr


 = 
M
1

 


n

1i
ii rm


CENTRE OF MASS OF A CONTINUOUS MASS DISTRIBUTION

xcm = 



dm

dmx
, ycm = 




dm

dmy
, zcm = 




dm

dmz

 dm = M (mass of the body)

CENTRE OF MASS OF SOME COMMON SYSTEMS
 A system of two point masses m1 r1 = m2 r2

The centre of mass lies closer to the heavier mass.

 Rectangular plate (By symmetry)

xc = 
2
b

yc = 
2
L
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 A triangular plate (By qualitative argument)

at the centroid : yc = 3
h

 A semi-circular ring    yc = 

R2

    xc = O

 A semi-circular disc  yc = 3
R4

   xc = O

 A hemispherical shell     yc = 
2
R

   xc = O

 A solid hemisphere    yc = 8
R3

  xc = O

 A circular cone (solid) yc = 
4
h

 A circular cone (hollow) yc = 3
h
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MOTION OF CENTRE OF MASS AND CONSERVATION OF MOMENTUM:
Velocity of centre of mass of system

cmv


= M
dt
drm..............

dt
drm

dt
drm

dt
drm n

n
3

3
2

2
1

1 

= 
M

vm..........vmvmvm nn332211




SystemP  = M cmv
Acceleration of centre of mass of system

cma


 = 
M

dt
dvm..............

dt
dvm

dt
dvm

dt
dvm n

n
3

3
2

2
1

1 

       = 
M

am..........amamam nn332211




       = 
M

systemonforceNet
 = 

M
ForceernalintNetForceExternalNet 

       = 
M

ForceExternalNet

extF


 = M cma


IMPULSE
Impulse of a force F action on a body is defined as :-

 J


 = 
f

i

t

t
Fdt PΔJ


 (impulse - momentum theorem)

Important points :
1. Gravitational force and spring force are always non-impulsive.
2. An impulsive force can only be balanced by another impulsive force.

COEFFICIENT OF RESTITUTION (e)

e = ndeformatioofpulseIm
nreformatioofpulseIm

 = 


dtF

dtF

d

r

= s impactoflinealongapproachofVelocity
impactoflinealongseparationofVelocity
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(a) e = 1  Impulse of Reformation  = Impulse of Deformation
 Velocity of separation = Velocity of approach
 Kinetic Energy may be conserved
 Elastic collision.

(b) e = 0  Impulse of Reformation = 0
 Velocity of separation = 0
 Kinetic Energy is not conserved
 Perfectly Inelastic collision.

(c) 0 < e < 1  Impulse of Reformation  < Impulse of Deformation
 Velocity of separation < Velocity of approach

 Kinetic Energy is not conserved
 Inelastic collision.

VARIABLE MASS SYSTEM :
If a mass is added or ejected from a system, at rate  kg/s and relative
velocity relv


 (w.r.t. the system), then the force exerted by this mass

on the system has magnitude relv


 .

Thrust Force ( tF


)









dt
dmvF relt



Rocket propulsion :
If gravity is ignored and initial velocity of the rocket u = 0;

v = v r ln 







m
m0 .

RIGID BODY DYNAMICS

1. RIGID BODY :

A VA

VB
2

1

B

VBsin2

VAcos1

VAsin1

VBcos2

A

B
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If the above body is rigid
VA cos 1   =  VB cos 2

VBA = relative velocity of point B with respect to point A.

VBA

B

A

    Pure Translational
         Motion

Pure Rotational 
         Motion

Types of Motion of rigid body

Combined Translational and 
Rotational Motion

2. MOMENT OF INERTIA (I) :
Definition : Moment of Inertia is defined as the capability of system
to oppose the change produced  in the rotational motion of a body.

Moment of Inertia is a scalar positive quantity.
 = mr1

2 + m2 r2
2 +.........................

  =  +  + 
  +.........................

S units of Moment of Inertia is Kgm2.

Moment of Inertia of  :
2.1 A single particle  :  = mr2

where  m = mass of the particle
r = perpendicular distance of the particle from the axis about

which moment of Inertia is to be calculated
2.2 For many particles (system of particles)  :

 = 


n

1i

2
iirm

2.3 For a continuous object :

 =   2dmr

where  dm = mass of a small element
r = perpendicular distance of the particle from the axis
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2.4 For a larger object :

 =   elementd

where  d = moment of inertia of a small element

3. TWO IMPORTANT THEOREMS ON MOMENT OF INERTIA :
3.1 Perpendicular Axis Theorem

[Only applicable to plane lamina (that means for 2-D objects only)].

z = x + y (when object is in x-y plane).

3.2 Parallel Axis Theorem
(Applicable to any type of object):
 = cm  + Md2

List of some useful formula :

Object Moment of Inertia

2MR
5
2

  (Uniform)

Solid Sphere

2MR
3
2

  (Uniform)

Hollow Sphere

    MR2 (Uniform or Non Uniform)
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Ring.

   
2

MR2
 (Uniform)

Disc

    MR2 (Uniform or Non Uniform)

Hollow cylinder

2
MR2

 (Uniform)

Solid cylinder

3
ML2

 (Uniform)

12
ML2

 (Uniform)
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3
m2 2

 (Uniform)

       AB = CD = EF = 
12

Ma2
  (Uniform)

Square Plate

6
Ma2

  (Uniform)

Square Plate

      = 
12

)ba(M 22   (Uniform)

Rectangular Plate

12
)ba(M 22   (Uniform)

Cuboid
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4. RADIUS OF GYRATION :
 = MK2

5. TORQUE :


 Fr

5.5  Relation between '' & '' (for hinged object or pure rotation)
Hingeext


= Hinge  



Where Hingeext


 = net external torque acting on the body about Hinge
point
  Hinge  = moment of Inertia of body about Hinge point

x

F1t

F1c

F2t

F2c

r1

r2

F1t = M1a1t = M1r1
F2t = M2a2t = M2r2
resultant  = F1t r1 + F2t r2 + ........

 = M1  r1
2 + M2  r2

2 + ............
resultant ) external  = 

Rotational Kinetic Energy = 2..
2
1



CMvMP


  CMexternal aMF



Net external force acting on the body has two parts tangential and
centripetal.

 FC = maC = 
CM

2

r
vm  = m2 rCM   Ft = mat = m rCM
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6. ROTATIONAL EQUILIBRIUM :
For translational equilibrium.

0Fx  ............. (i)

and 0Fy  ............. (ii)
The condition of rotational equilibrium is

0z 

7. ANGULAR MOMENTUM (L


)
7.1 Angular momentum of a particle about a point.

       

L
 = Pr


  L = rpsin

L


  = r × P

L


 = P× r

7.3  Angular momentum of a rigid body rotating about fixed axis :


HL  = H

LH = angular momentum of object about axis H.
IH = Moment of Inertia of rigid object about axis H.
 = angular velocity of the object.

7.4 Conservation of Angular Momentum
Angular momentum of a particle or a system remains constant if
 ext  = 0 about that point or axis of rotation.

7.5 Relation between Torque and Angular Momentum


  = 

dt
Ld


Torque is change in angular momentum
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7.6 Impulse of Torque :

  Jdt J  Change in angular momentum.

For a rigid body, the distance between the particles remain unchanged
during its motion i.e. rP/Q = constant
For velocities

Q

P
r r



with respect to Q

Q

P
r

wr


with respect to ground

VQ

VQ



   cosrV2rVV Q
22

QP
For acceleration :

, ,  are same about every point of the body (or any other point
outside which is rigidly attached to the body).
Dynamics :




cmcm , cmext aMF




cmsystem vMP


 ,

Total K.E. = 2cmMv
2
1

+ 2
cm2

1


Angular momentum axis AB = L


 about C.M. + L


 of C.M. about ABAB

cmcmcmAB vMrL



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SIMPLE HARMONIC MOTION
S.H.M.
F = – kx
General equation of S.H.M. is x = A sin (t + ); (t + ) is phase of the
motion and  is initial phase of the motion.

Angular Frequency () :   = 
T
2

 = 2f

Time period (T) : T = 

2

= 
k
m2

m
k

Speed : 22 xAv 
Acceleration : a = 2x

Kinetic Energy (KE) :       
2
1

 mv2  = 
2
1

 m2 (A2 – x2) =
2
1

 k (A2 – x2)

Potential Energy (PE) :
2
1

 Kx2

Total Mechanical Energy (TME)

= K.E. + P.E.  = 
2
1

 k (A2 – x2) + 
2
1

 Kx2 = 
2
1

 KA2  (which is constant)

SPRING-MASS SYSTEM

(1)
smooth surface


 k

 m

 T = 2
k
m

(2)

 T = 
K

2 
 where  = )m(m

mm

21

21

 known as reduced mass
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COMBINATION OF SPRINGS
Series Combination : 1/keq = 1/k1 + 1/k2
Parallel combination : keq = k1 + k2

SIMPLE PENDULUM T = 2 g


  =  2
.effg


 (in accelerating Refer-

ence Frame); geff is net acceleration due to pseudo force and gravitational
force.

COMPOUND PENDULUM / PHYSICAL PENDULUM

Time period (T) : T = 2 mg


where,  = CM + m2 ;  is distance between point of suspension and
centre of mass.
TORSIONAL PENDULUM

Time period (T) : T = 2 C


where, C = Torsional constant

Superposition of SHM’s along the same direction
x

1
 = A

1
 sin t  & x

2
 = A

2
 sin (t + )

A2

A

A1

If equation of resultant SHM is taken as x = A sin (t + )

A =  cosAA2AA 21
2
2

2
1 & tan  = 




cosAA
sinA

21

2

1. Damped Oscillation
 Damping force

vb–F



 equation of motion is

dt
mdv

= –kx – bv

 b2 - 4mK > 0 over damping
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 b2 - 4mK = 0 critical damping
 b2 - 4mK < 0 under damping
 For small damping the solution is of the form.

x =  m2/bt–
0eA  sin [1t +  ],  where   

2

m2
b–

m
k' 
















For small b

 angular frequency  0,m/k' 

 Amplitude  m2
bt–

0eAA 

l

 Energy  E (t) =  
2
1

KA2 m/bt–e

 Quality factor or Q value , Q = |E|
E2


  = 
Y2
'




where  , 2

2

m4
b.

m
k'     ,

m2
b

Y 

2. Forced Oscillations And Resonance
External Force F(t) = F0 cos d t
x(t) = A cos (dt + )

 
0

22 2 2 2 2
d d

F
A

m b


      
 

and   0

d 0

v
tan

x


 


(a) Small Damping   
0

2 2
d

F
A

m


  

(b)  Driving Frequency Close to Natural Frequency  0

d

F
A

b


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STRING WAVES
GENERAL EQUATION OF WAVE MOTION :

2

2

t
y




 = v2

2

2

x
y





y(x,t) = f (t ± 
v
x

)

  where,  y (x, t) should be finite everywhere.

 f 









v
xt  represents wave travelling in – ve x-axis.

 f 






 
v
xt  represents wave travelling in + ve x-axis.

y = A sin (t ± kx + )

TERMS RELATED TO WAVE MOTION ( FOR 1-D PROGRESSIVE
SINE WAVE )
(e) Wave number (or propagation constant) (k) :

k = 2/ = 
v


 (rad m–1)

(f) Phase of wave :  The argument of harmonic function (t ± kx + )
is called phase of the wave.
    Phase difference () : difference in phases of two particles at any
time t.

 = 

2

 x Also.  
T
2

t

SPEED OF TRANSVERSE WAVE ALONG A STRING/WIRE.

v = 
T

   where lengthunitpermass
TensionT




POWER TRANSMITTED ALONG THE STRING BY A SINE WAVE
Average Power P  = 22 f2 AA2 v

Intensity I = 
s
P

 = 22 f2 A2 v

REFLECTION AND REFRACTION OF WAVES
yi = Ai sin (t – k1x)









x)k  t( sin A  y
x)k  t( sin  A y

1rr

2tt
 if incident from rarer to denser medium (v2 < v1)
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






x)k  t( sin  A y
x)k – t( sin  A y

1rr

2tt
 if incident from denser to rarer medium. (v2 > v1)

(d) Amplitude of reflected & transmitted waves.

Ar = i
21

21 A
kk
kk




 & AAt =  i

21

1 A
kk

k2


STANDING/STATIONARY WAVES :-
(b) y1 = A sin (t – kx + 1)

y2 =  A sin (t + kx + 2)

y1 + y2 = 














 


2
kxcosA2 12

sin 






 


2
t 21

The quantity 2A cos 






 


2
kx 12  represents resultant amplitude at

x. At some position resultant amplitude is zero these are called nodes.
At some positions resultant amplitude is 2A, these are called antin-
odes.

(c) Distance between successive nodes or antinodes = 
2


.

(d) Distance between successive nodes and antinodes = /4.
(e) All the particles in same segment (portion between two successive
nodes) vibrate in same phase.
(f) The particles in two consecutive segments vibrate in opposite phase.
(g) Since nodes are permanently at rest so energy can not be trans-
mitted across these.

VIBRATIONS OF STRINGS ( STANDING WAVE)
(a) Fixed at both ends  :
1. Fixed ends will be nodes. So waves for which

L = 
2


L = 
2

2
L = 

2
3

              

     are possible giving

L = 
2

n
or  = 

n
L2

 where n = 1, 2, 3, ....

as v = 
T

fn = 
T

L2
n

 , n = no. of loops
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(b) String free at one end :

1. for fundamental mode L = 
4


 = or  = 4L

  fundamental mode

First overtone L = 
4

3
  Hence  = 3

L4

  first overtone

so f1 = 
T

L4
3

 (First overtone)

Second overtone f2 = 
T

L4
5

so fn = 













 

T
L4

)1n2(T
L2
2
1n

HEAT & THERMODYNAMICS

Total translational K.E. of gas = 
2
1

M < V2 > = 
2
3

 PV = 
2
3

 nRTT

< V2 > = 

P3

Vrms =  

P3

 = 
molM
RT3

 = 
m
KT3

Important Points :

– Vrms  T m
KT8V


  = 1.59 
m
KT

Vrms = 1.73 
m
KT

Most probable speed Vp = 
m
KT2

  = 1.41 
m
KT

 Vrms > V  > Vmp

Degree of freedom :
Mono atomic f = 3
Diatomic f = 5
polyatomic f = 6
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Maxwell’s law of equipartition of energy :
Total K.E. of the molecule = 1/2  f KT
For an ideal gas :

Internal energy  U = 
2
f

 nRT

Workdone in isothermal process : W = [2.303 nRT log10 
i

f

V
V

]

Internal energy in isothermal process :   U = 0

Work done in isochoric process : dW = 0
Change in int. energy in isochoric process :

U = n 
2
f

R T = heat given

Isobaric process :
Work done  W = nR(Tf – Ti)
change in int. energy U = nCv T
heat given Q = U + W

Specific heat : Cv  = 
2
f

R Cp = 





 1

2
f

R

Molar heat capacity of ideal gas in terms of R :

(i) for monoatomic gas :
v

p

C
C

 = 1.67

(ii) for diatomic gas :
v

p

C
C

 = 1.4

(iii) for triatomic gas :
v

p

C
C

 = 1.33

In general :  = 
v

p

C
C

 = 



 

f
21

Mayer’s eq.   Cp – Cv = R for ideal gas only

Adiabatic process :

Work done  W = 1
)TT(nR fi



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In cyclic process :
Q = W
In a mixture of non-reacting gases :

Mol. wt. = 
21

2211

nn
MnMn




Cv = 
21

v2v1

nn

CnCn
21





 = 
)mix(v

)mix(p

C
C

 = ....CnCn

.....CnCn

21

21

v2v1

p2p1





Heat Engines

Efficiency , ittopliedsupheat
enginethebydonework



= 
H

L

H

LH

H Q
Q–1

Q
Q–Q

Q
W



Second law of Thermodynamics
 Kelvin- Planck Statement
It is impossible to construct an engine, operating in a cycle, which will
produce no effect other than extracting heat from a reservoir and perform-
ing an equivalent amount of work.
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 Rudlope Classius Statement
It is impossible to make heat f low from a body at a lower
temperature to a body at a higher temperature without doing external work
on the working substance

Entropy

 change in  entropy of the system is S = 
T
Q

 



f

i
if T

QS–S

 In an adiabatic reversible process, entropy of the system remains con-
stant.

Efficiency of Carnot Engine
(1) Operation I (Isothermal Expansion)
(2) Operation II (Adiabatic Expansion)
(3) Operation III (Isothermal Compression)
(4) Operation IV (Adiabatic Compression)

Thermal Efficiency of a Carnot engine

4

3

1

2

V
V

V
V

  
1

2

1

2

T
T

Q
Q

 
1

2

T
T–1
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Refrigerator (Heat Pump)

 Refrigerator 

Hot (T1) Hot (T2)
Q1 Q2 

W

 Coefficient of performance,  
W
Q2 = 

1–
T
T

1

2

1
 =

1–
T
T

1

2

1


Calorimetry and thermal expansion
Types of thermometers :

(a) Liquid Thermometer : T = 











0100

0




 × 100

(b) Gas Thermometer :

Constant volume : T = 











0100

0

PP
PP

 × 100 ;  P = P0 + g h

Constant Pressure : T = 





 VV
V

 T0

(c) Electrical Resistance Thermometer :

T = 










0100

0t

RR
RR

 × 100

Thermal Expansion :
(a) Linear :

 = TL
L

0


or L = L0 (1 + T)
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(b) Area/superficial :

 = TA
A

0


or A = A0 (1 + T)

(c) volume/ cubical :

r = TV
V

0


or V = V0 (1 +  T)

32







Thermal stress of a material :




 Y

A
F

Energy stored per unit volume :

E = 
2
1

K(L)2 or 2)L(
L

AY
2
1E 

Variation of time period of pendulum clocks :

T = 
2
1

 T

T’ < T - clock-fast  : time-gain
T’ > T    - clock slow  : time-loss

CALORIMETRY :

Specific heat S = 
T.m

Q


Molar specific heat C = 
T.n

Q



Water equivalent  = mWSW

HEAT TRANSFER

Thermal Conduction : dt
dQ

 = – KA dx
dT

Thermal Resistance : R = 
KA

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Series and parallel combination of rod :

(i) Series :
eq

eq

K


 = .......
KK 2

2

1

1 


(when A1 = A2 = A3 = .........)

(ii) Parallel : Keq Aeq = K1 A1 + K2 A2 + ...... (when  1 = 2 = 3 = .........)

for absorption, reflection and transmission
r + t + a = 1

Emissive power : E = tA
U




Spectral emissive power : E = 
d

dE

Emissivity : e = temp. T atbody  black a of E
temp. T atbody  a of E

Kirchoff’s law : )body(a
)body(E
 = E (black body)

Wein’s Displacement law : m . T = b.
b = 0.282 cm-k

Stefan Boltzmann law :
u =  T4 s = 5.67 × 10–8 W/m2 k4

u = u – u0  = e A (T4 – T0
4)

Newton’s law of cooling : 
dt
d

 = k ( – 0) ;    = 0 + (i – 0) e
–k t

ELECTROSTATICS
Coulomb force between two point charges

r
|r|
qq

4
1F 3

21

r0







  =  

r̂
|r|

qq
4

1
2
21

r0





 The electric field intensity at any point is the force experienced

by unit positive charge, given by  
0q

FE





 Electric force on a charge 'q' at the position of electric field

intensity E


 produced by some source charges is EqF



 Electric Potential
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If (W  P)ext is the work required in moving a point charge q from infinity
to a point P, the electric potential of the point P is

0acc

extp
p q

)W(
V










 Potential Difference between two points A and B is
VA – VB

 Formulae of  E


 and potential V

(i) Point charge E= r̂
|r|

Kq
2   = r

r
Kq

3


, V = 

r
Kq

(ii) Infinitely long line charge r̂
r2 0


=

r
r̂K2 

V = not defined, vB – vA = –2K  ln (rB / rA)

(iii) Infinite nonconducting thin sheet n̂
2 0


,

V = not defined,  AB
0

AB rr
2

vv 





(iv) Uniformly charged ring

Eaxis =   2/322 xR

KQx


, Ecentre = 0

Vaxis = 22 xR

KQ


, Vcentre = 

R
KQ

x is the distance from centre along axis.

(v) Infinitely large charged conducting sheet  n̂
0


V = not defined,  AB
0

AB rrvv 





(vi) Uniformly charged hollow conducting/ nonconducting /solid
conducting sphere

 (a) for r̂
|r|

kQE 2

 ,  r   R,  V = 

r
KQ

 (b) 0E 
  for r < R,  V = 

R
KQ
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(vii)  Uniformly charged solid nonconducting sphere (insulating material)

(a) r̂
|r|

kQE 2

  for r   R , V = 

r
KQ

(b)
0

3 3
r

R
rKQE







 for r   R, V = 
06


(3R2–r2)

(viii) thin uniformly charged disc (surface charge density is )

Eaxis = 

















220 xR

x1
2 Vaxis = 



 


 xxR

2
22

0

 Work done by external agent in taking a charge q from A to B is
(Wext)AB= q (VB – VA) or (Wel) AB = q (VA – VB) .

 The electrostatic potential energy of a point charge
U = qV

 U = PE of the system =

2
...UU 21 

 = (U12 + U13 + ..... + U1n) + (U23 + U24 + ...... + U2n)

+ (U34 + U35 + ..... + U3n) ....

 Energy Density = 
2
1
E2

 Self Energy of a uniformly charged shell = 
R2

KQU
2

self 

 Self Energy of a uniformly charged solid non-conducting sphere

= 
R5

KQ3U
2

self 

 Electric Field Intensity Due to Dipole

(i) on the axis E
  = 3r

PK2


(ii) on the equatorial position : E


 = – 3r
PK


(iii) Total electric field at general point O (r,) is  Eres =  2
3 cos31

r
KP
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 Potential Energy of an Electric Dipole in External Electric Field:

U = - 
 
p E.

 Electric Dipole in Uniform Electric Field :

torque 
  
  p x E ;  


F   =  0

 Electric Dipole in Nonuniform Electric Field:

torque 
  
  p x E ; U =


 Ep , Net force |F| = r

Ep



 Electric Potential Due to Dipole at General Point (r, ) :

V = 
P

r

p r

r

cos .
 4 40

2
0

3


 

 The electric flux over the whole area is given by

E = S dS.E


 = S ndSE

 Flux using Gauss's law, Flux through a closed surface

E = dSE 


=  
0

inq


.

 Electric field intensity near the conducting surface

=
0


n̂

 Electric pressure : Electric pressure at the surface of a conductor is
given by formula

P = 
0

2

2


  where  is the local surface charge density..

 Potential difference between points A and B

VB – VA =  – 
B

A

rd.E


E


 = 


















 V
z

k̂V
x

ĵV
x

î = – V
z

k̂
x

ĵ
x

î 




















     = – V = –grad V
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CURRENT ELECTRICITY

1. ELECTRIC  CURRENT

Iav = t
q



 and instantaneous current

i =. dt
dq

t
qLim

0t







2. ELECTRIC CURRENT IN A CONDUCTOR
I = nAeV.




dv ,













2

d
m
eE

2
1

v  = 
m
eE

2
1 ,

 I = neAVd
3. CURRENT DENSITY

n
ds
dIJ




4. ELECTRICAL RESISTANCE

I = neAVd = neA 







m2
eE

  = 








 
m2

ne2

 AEAE

E = 


V
so I = 

















 


A
m2

ne2

 V = 








A

 V = V/R    V = IR

 is called resistiv ity (it is also called specific resistance) and

= 
2ne

m2
 =

1

,  is called conductivity. Therefore current in conductors

is proportional to potential difference applied across its ends. This is
Ohm's Law.
Units:

)m(meterohm),(ohmR 

also called siemens, 11m .
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Dependence of Resistance on Temperature :
R = Ro (1 + ).
Electric current in resistance

I = 
R

VV 12 

5. ELECTRICAL  POWER
P = V

Energy = pdt

P = I2R  = V = 
R
V2

 .

H = Vt = 2 Rt = t
R
V 2

H = 2 RT  Joule = 
2.4

RT2  Calorie

9. KIRCHHOFF'S  LAWS
9.1 Kirchhoff’s Current Law (Junction law)

 in = out
9.2 Kirchhoff’s Voltage Law (Loop law)

IR + EMF =0”.

10. COMBINATION OF RESISTANCES :
Resistances  in  Series:
R = R1 + R2 + R3 +................ + Rn (this means Req is greater then any
resistor) ) and
V = V1 + V2 + V3 +................ + Vn 

.

V1 = V
R.........RR

R

n21

1


; V2 =  V

R.........RR
R

n21

2


  ;

2. Resistances in Parallel :
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11. WHEATSTONE  NETWORK : (4 TERMINAL NETWORK)

When current through the galvanometer is zero (null point or balance

point) Q
P

= S
R

, then PS = QR

13. GROUPING  OF  CELLS
13.1  Cells  in  Series :

  

Equivalent EMFEeq = E E ....... En1 2    [write EMF's with polarity]

Equivalent internal resistance req = n4321 r....rrrr 

13.2 Cells  in  Parallel:

n21

n
n

2
2

1
1

eq

r
1.....r

1
r

1
r....rrE





   [Use emf with polarity]  

n21eq r
1....

r
1

r
1

r
1



15. AMMETER
A shunt (small resistance) is connected in parallel with galvanometer
to convert it into ammeter.  An ideal ammeter has zero resistance
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Ammeter is represented as follows -

    

If maximum value of current to be measured by ammeter is  then
IG . RG = (I – IG)S

S = 
G

GG R.



S = 


 GG R

when   >> G.

where  = Maximum current that can be measured using the given
ammeter.

16. VOLTMETER
A high resistance is put in series with galvanometer. It is used to
measure potential difference across a resistor in a circuit.

For maximum potential difference
V = G . RS + G RG

RS = 
G

V
  – RG If RG << RS    RS  

G

V


17. POTENTIOMETER

 = 
Rr 


    

VA – VB = 
rR 

 .R

Potential gradient (x)  Potential difference per unit length of wire

x = 
L

VV BA 
 = 

rR 


 . 
L
R
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Application of potentiometer
(a) To find emf of unknown cell and compare emf of two cells.

In case ,
In figure (1) is joint to (2) then balance length = 1
1 = x1 ....(1)

in case ,
In figure (3) is joint to (2) then balance length = 2
2 = x2 ....(2)

2

1

2

1









If any one of 1 or 2 is known the other can be found. If x is known then
both 1 and 2 can be found

(b) To find current if resistance is known
VA – VC = x1
IR1 = x1

 = 
1

1

R
x

Similarly, we can find the value of R2 also.
Potentiometer is ideal voltmeter because it does not draw any current
from circuit, at the balance point.
(c) To find the internal resistance of cell.

Ist arrangement 2nd arrangement
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by first arrangement ’ = x1 ...(1)
by second arrangement  IR = x2

 = 
R

x 2 , also  = 
R'r
'




R'r
'



 = 
R

x 2 
R'r

x 1




 = 
R

x 2

r’ = R 
2

21







 




(d)Ammeter and voltmeter can be graduated by potentiometer.
(e)Ammeter and voltmeter can be calibrated by potentiometer.

18. METRE BRIDGE (USE TO MEASURE UNKNOWN RESISTANCE)
If AB =  cm, then BC = (100 – ) cm.
Resistance of the wire between A and B , R  
[   Specific resistance  and cross-sectional area A are same for whole
of the wire ]

or R =  ...(1)
where  is resistance per cm of wire.

If P is the resistance of wire between A and B then
P    P = ()

Similarly, if Q is resistance of the wire between B and C, then
Q  100 – 

 Q = (100 – ) ....(2)

Dividing (1) by (2), Q
P

 = 




100



Page # 47

Applying the condition for balanced Wheatstone bridge, we get R  Q = P X

 x = R 
P
Q

or X = 


100
 R

Since R and  are known, therefore, the value of X can be calculated.

CAPACITANCE

1.  (i) q   V  q =  CV
q : Charge on positive plate of the capacitor
C : Capacitance of capacitor.
V : Potential difference between positive and negative plates.

(ii) Representation of capacitor :   ,  (

(iii) Energy stored in the capacitor : U =
2
1

CV2 = 
C2

Q2

= 2
QV

(iv) Energy density =  
2
1

 r E
2 = 2

1


K E2

r = Relative permittivity of the medium.
K=   r : Dielectric Constant

For vacuum, energy density =  
2
1
E

2

(v) Types of Capacitors :
(a) Parallel plate capacitor

C = d
Ar0

   =  K d
A0

A : Area of plates
d : distance between the plates( << size of plate )

(b) Spherical Capacitor :
 Capacitance of an isolated spherical Conductor (hollow or solid )

C= 4 r R
R = Radius of the spherical conductor

 Capacitance of spherical capacitor

C= 4 )ab(
ab
             

1 2b
a

 C = 
)ab(
abK4 20


 K1 K2 K3

b
a
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(c) Cylindrical Capacitor :    >> {a,b}

Capacitance per unit length = )a/b(n
2




F/m    b

(vi) Capacitance of capacitor depends on
(a) Area of plates
(b) Distance between the plates
(c) Dielectric medium between the plates.

(vii) Electric field intensity between the plates of capacitor

E =
0


  d
V

Surface change density

(viii) Force experienced by any plate of capacitor : F =  
0

2

A2
q


2. DISTRIBUTION OF CHARGES ON CONNECTING TWO  CHARGED
CAPACITORS:
When two capacitors are C1  and C2 are  connected as shown in figure

(a) Common potential :

 V = 
21

2211

CC
VCVC




 = cetancapaciTotal
eargchTotal

(b) Q1' = C1V = 
21

1

CC
C


(Q1 + Q2)

Q2' = C2 V = 
21

2

CC
C
  (Q1 +Q2)
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(c) Heat loss during redistribution :

H = Ui – Uf = 
2
1

 
21

21

CC
CC
  (V1 – V2)

2

The loss of energy is in the form of Joule heating in the wire.

3. Combination of capacitor :
(i) Series Combination

321eq C
1

C
1

C
1

C
1


321

321 C
1:

C
1:

C
1V:V:V 

+Q

V1 V2
V3

C2C1 C3

–Q +Q –Q +Q –Q

(ii) Parallel Combination :

Q+ –Q

C3

C2

C1

V

Q+ –Q

Q+ –Q

Ceq = C1 + C2 + C3 Q1: Q2 :Q3 = C1 : C2 : C3

4. Charging and Discharging of  a  capacitor :
(i) Charging of Capacitor ( Capacitor initially uncharged ):

q = q0 ( 1 – e– t /)
R

V C

q0 = Charge on the capacitor at steady state
q0 = CV
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Time constant  = CReq.

I = 

0q

 e – t / 
R
V

e– t / 

(ii) Discharging of Capacitor :
q = q0 e – t / 

q0 = Initial charge on the capacitor

I = 

0q

 e – t / 

R

C

     

q0

0.37v0

 t

q

 5. Capacitor with dielectric :
(i) Capacitance in the presence of dielectric :

C = d
AK 0  = KC0

+ + + + + + + + + + + + + +

0

+ + 

– – 

V

b+

– b– – – – – – – – – – –

 0b

C0 = Capacitance in the absence of dielectric.
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(ii) Ein = E – Eind = 
0


 – 
0

b




 = 
0K


 = d

V

E : 
0


  Electric field in the absence of dielectric

Eind : Induced (bound) charge density.

(iii) b = (1 – 
K
1

).

6. Force on dielectric

(i) When battery is connected
d2

V)1K(bF
2

0 


+

–

b b





d





F

x

(ii) When battery is not connected F = 2

2

C2
Q

 dx
dC

* Force on the dielectric will be zero when the dielectric is fully inside.
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ALTERNATING CURRENT
1. AC AND DC CURRENT :

A current that changes its direction periodically is called alternating cur-
rent (AC). If a current maintains its direction constant it is called direct
current (DC).

3. ROOT MEAN SQUARE VALUE:
Root Mean Square Value of a function, from t1 to t2, is defined as

frms = 
12

2
2

1

tt

dtf
t

t




 .

4. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT:

Average power consumed in a cycle  = 








2

2

o

Pdt

=
2
1

 Vm m cos 

= 2
Vm

 . 2
m

 . cos  = Vrms rms cos .

Here cos  is called power factor.
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5. SOME DEFINITIONS:
The factor cos  is called Power factor.
m sin  is called wattless current.

Impedance Z is defined as Z = 
m

mV


 = 
rms

rmsV


L is called inductive reactance and is denoted by XL.

C
1

 is called capacitive reactance and is denoted by XC.

6. PURELY RESISTIVE CIRCUIT:

I =
R

sv
=

R
tsinVm 

= m sin t

m = 
R
Vm

rms = 
R

Vrms

<P> = Vrmsrmscos 
R

Vrms
2

7. PURELY CAPACITIVE CIRCUIT:

I =  =
C

1
Vm


cos t

= 
C

m

X
V

cos t = m cos t.

XC = C
1


 and is called capacitive reactance.

V

t

v

T

t

I
i
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IC leads by vC by /2 Diagrammatically
(phasor diagram) it is represented as

m

Vm

.

Since º,  <P> = Vrms rmscos 

MAGNETIC EFFECT OF CURRENT & MAGNETIC FORCE ON
CHARGE/CURRENT

1. Magnetic field due to a moving point charge

3
0

r
)rv(q

4
B

 







2. Biot-savart's Law
v r













 





 3
0

r
rd

4
I

dB




3. Magnetic field due to a straight wire
1

2

P
r

B = 



4

0  
r
I

 (sin 1 + sin 2)

4. Magnetic field due to infinite straight wire
Pr



B = 

2

0  
r
I

5. Magnetic field due to circular loop

(i) At centre B = 
r2
NI0

(ii) At Axis B = 













2/322

2
0

)xR(
RN

2
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6. Magnetic field on the axis of the solenoid
2 1 B = 

2
nI0   (cos 1 – cos 2)

7. Ampere's Law

  Id.B 0


8. Magnetic field due to long cylinderical shell

B = 0, r < R

= Rr,
r
I

2
0 




9. Magnetic force acting on a moving point charge
a. )B(qF




(i) B




qB
mr 



× × × ×

×

×

×

×

×

×

×
×
×

×

×

×

B
r

T = qB
m2

(ii) 



B qB
sinmr 



T = qB
m2

Pitch = qB
cosm2 

b.  E)B(qF




10. Magnetic force acting on a current carrying wire

 BIF






11. Magnetic Moment of a current carrying loop
M = N · I · A

12. Torque acting on a loop
BM



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13. Magnetic field due to a single pole

B = 2
0

r
m·

4


14. Magnetic field on the axis of magnet

B = 3
0

r
M2·

4


15. Magnetic field on the equatorial axis of the magnet

B = 3
0

r
M·

4


16. Magnetic field at point P due to magnet

B = 3
0

r
M

4


 2cos31



S

P

r

N

ELECTROMAGNETIC INDUCTION

1. Magnetic flux is mathematically defined as  =  sd.B


2. Faraday’s laws of electromagnetic induction

E = – dt
d

3. Lenz’s Law (conservation of energy principle)
According to this law, emf will be induced in such a way that it will oppose
the cause which has produced it.
Motional emf

4. Induced emf due to rotation
Emf induced in a conducting rod of length l rotating with angular speed 
about its one end, in a uniform perpendicular magnetic field B is 1/2 B 
2.
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1. EMF Induced in a rotating disc :
Emf between the centre and the edge of disc of radius r rotating in a

magnetic field B = 
2
rB 2

5. Fixed loop in a varying magnetic field

If magnetic field changes with the rate dt
dB

, electric field is generated

whose average tangential value along a circle is given by E= dt
dB

2
r

This electric field is non conservative in nature. The lines of force associ-
ated with this electric field are closed curves.

6. Self induction

 = t
IL

t
)LI(

t
)N(








 .

The instantaneous emf is given as  = dt
LdI

dt
)LI(d

dt
)N(d






Self inductance of solenoid =  µ0 n
2 r2.

6.1 Inductor

It is represent by
electrical equivalence of loop

      

BA V
dt
dILV 

Energy stored in an inductor  = 
2
1

L 2

7. Growth Of Current in Series R–L Circuit
If a circuit consists of a cell, an inductor L and a resistor R and a switch S
,connected in series and the switch is closed at t = 0, the current in the

circuit I will increase as I =  )e1(
R

L
Rt



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The quantity L/R is called time constant of the circuit and is denoted by .
The variation of current with time is as shown.

1. Final current in the circuit = 
R


 , which is independent of L.

          

2. After one time constant , current in the circuit =63% of the final current.
3. More time constant in the circuit implies slower rate of change of current.

8 Decay of current in the circuit containing resistor and inductor:
Let the initial current in a circuit containing inductor and resistor be 0.

Current at a time t is given as I = 0
L
Rt

e


Current after one time constant : I = 0
1e =0.37% of initial current.

9. Mutual inductance is induction of EMF in a coil (secondary) due to
change in current in another coil (primary). If current in primary coil is I,
total flux in secondary is proportional to I, i.e. N  (in secondary)  I.

or N  (in secondary) = M I.
The emf generated around the secondary due to the current flowing around
the primary is directly proportional to the rate at which that current changes.

10. Equivalent self inductance :

dt/dI
VVL BA 

 ..(1)

1. Series combination :
L = L1 + L2   ( neglecting mutual inductance)
L = L1 + L2 + 2M  (if coils are mutually coupled and they have

    winding in same direction)
L = L1 + L2 – 2M    (if coils are mutually coupled and they have

    winding in opposite direction)
2. Parallel Combination  :

21 L
1

L
1

L
1

 ( neglecting mutual inductance)
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For two coils which are mutually coupled it has been found that M  21LL

or M =k 21LL  where k is called coupling constant and its value is less
than or equal to 1.            

Primary 
coil

S

EP
ES

Secondary 
coil

Magnetic Core

s

p

p

s

p

s

N
N

E
E




  , where denota-

tions have their usual mean-
ings.

NS > NP
 ES > EP 
for step up transformer.

12. LC Oscillations

             LC
12 

GEOMETRICAL OPTICS

1. Reflection  of  Light
(b) i  = r
1.3 Characteristics of image due to Reflection by a Plane
Mirror:
(a) Distance of object from mirror = Distance of  image from the mirror.
(b) The line joining a point object and its image is normal to the reflecting
surface.
(c) The size of the image is the same as that of the object.
(d) For a real object the image is virtual and for a virtual object the image
is real

2. Relation between velocity of object and image :
From mirror property :   xim = - xom  ,   yim = yom  and  zim = zom
Here xim means ‘x’ coordinate of image with respect to mirror.
Similarly others have meaning.
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Differentiating w.r.t time , we  get
v(im)x = -v(om)x ;  v(im)y = v(om)y ; v(im)z = v(om)z ,

3. Spherical  Mirror

1
v +

1
u =

2
R =

1
f ..... Mirror formula

x co–ordinate of centre of  Curvature and  focus of Concave
mirror are negative and those for Convex mirror are positive.
In case of mirrors since light rays reflect back in - X direction,
therefore -ve sign of v indicates real image and +ve
sign of v indicates virtual image

(b) Lateral magnification (or transverse magnification)

m= 
h

h
2

1

m = 
v

u
.

(d) On differentiating (a) we get
dv
du = 

v

u

2

2
 .

(e) On dif ferentiating (a) with respect to time we get

dv
dt

v
u

du
dt

 
2

2 ,where 
dv
dt  is the velocity of image along Principal

axis and
du
dt  is the velocity of object along Principal axis. Negative

sign implies that the image , in case of mirror, always moves
in the direction opposite to that of object.This discussion is
for velocity with respect to mirror and along the x axis.

(f) Newton's  Formula: XY = f 2
X  and Y are the distances ( along the principal axis ) of the object
and image respectively from the principal focus. This formula can
be used when the distances are mentioned or asked from the
focus.

(g) Optical power of a mirror (in Diopters) = f
1

f = focal length with sign and in meters.
(h) If object lying along the principal axis is not of very small size, the

longitudinal magnification =
12

12

uu
vv




     (it will always be inverted)
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4. Refraction  of  Light

 vacuum.  
speed of light in vacuum
speed of light in medium

c
v

.

4.1 Laws  of  Refraction (at  any  Refracting  Surface)

(b)
rSin

iSin
 = Constant  for any pair of media and for light of a given

wave length. This is known as Snell's Law. More precisely,

Sin i

Sin r
  = 

n

n
2

1

 = 
v

v
1

2

 = 



1

2

4.2 Deviation  of  a  Ray  Due  to  Refraction
Deviation () of ray incident at i and refracted at r is given by  = |i  r|.

5. Principle of  Reversibility  of  Light  Rays
A ray travelling along the path of the reflected ray is reflected along the
path of the incident ray. A refracted  ray  reversed  to travel back along  its
path will get  refracted along the path of the incident  ray. Thus the incident
and refracted rays are mutually reversible.

7. Apparent  Depth and shift of  Submerged  Object
At near normal incidence (small angle of incidence i) apparent depth (d)
is given by:

d=
relativen

d    nrelative = 
)refractionofmediumof.I.R(n
)incidenceofmediumof.I.R(n

r

i

Apparent  shift =  d 









reln
11

Refraction   through   a Composite  Slab  (or  Refraction through  a
number  of  parallel  media, as  seen  from  a  medium  of  R. I.  n0)
Apparent  depth (distance of final image from final surface)

=  
t

n rel

1

1
 + 

t

n rel

2

2
 + 

t

n rel

3

3

 +......... + 
reln

n

n
t
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Apparent  shift =  t1 













rel1n
11  +  t2 














rel2n
11 +........+














relnn
n1

8. Critical  Angle  and  Total  Internal  Reflection ( T. I. R.)

C = sin 1 n
n

r

d

(i) Conditions  of   T. I. R.
(a) light is incident on the interface from denser medium.
(b) Angle of incidence should be greater than the critical

angle (i > c).
9. Refraction  Through  Prism

9.1 Characteristics of a prism

 = (i + e)  (r1 + r2)  and  r1 + r2 = A
 = i + e  A.

9.2 Variation of  versus i
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(1) There is one and only one angle of incidence for which  the angle
of deviation is minimum.

(2) When  = min ,  the angle of minimum deviation, then i = e  and
r1 = r2, the ray passes symmetrically w.r.t. the refracting surfaces.
We can show by simple calculation that min  = 2imin – A
where imin = angle of incidence for minimum deviation and r = A/2.

  nrel =
 
 2
A
2

A

sin
sin m

,  where  nrel = 
n

n
prism

surroundings

Alsomin = (n  1) A (for small values of  A)
(3) For a thin prism ( A 10o) and for small value of i, all values of

 = ( nrel  1 ) A where nrel = 
gsurroundin

prism

n
n

10. Dispersion  Of  Light
The  angular splitting of a ray of white light into a number of components
and spreading in different directions is called  Dispersion  of  Light. This
phenomenon is because waves of different wavelength move with same
speed in vacuum but with different speeds in a medium.
The refractive index of a medium depends slightly on wavelength also.
This variation of refractive index with wavelength is given by Cauchy’s
formula.

Cauchy's formula   n () =a
b


2    where  a and b are positive constants

of a medium.
Angle between the rays of the extreme colours in the refracted (dispersed) light is
called angle of dispersion.
For prism of small ‘A’ and with small ‘i’ :  = (nv – nr)A
Deviation of beam(also called mean deviation)  = y = (ny – 1)A
Dispersive power () of the medium of the material of prism is given by:

 = 1n
nn

y

rv




For small angled prism ( A 10o ) with light incident at small angle i :

1n
nn

y

rv




 =
y

rv




 = 
y


= 
angular dispersion

deviation of mean ray yellow( )
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[ ny = 
2

nn rv   if ny is not given in the problem ]

 = 
y

rv




 = 1n
nn

y

rv




[take  ny = 2
nn rv   if value of ny is  not given in

the problem]
nv, nr and ny are  R. I. of material for violet, red and yellow colours respectively.

11. Combination  of  Two  Prisms
Two or more prisms can be combined in various ways to get different
combination of angular dispersion and deviation.
(a) Direct  Vision  Combination (dispersion without deviation)

The condition  for direct vision combination is :

 










1

2
nn rv

A   










1

2
nn rv  A     1ny  A =  =  1ny  AA

 (b) Achromatic  Combination  (deviation without dispersion.)
Condition for achromatic combination is:  (nv

  nr) A = (nv
  nr) A

12. Refraction  at  Spherical  Surfaces
For paraxial rays incident on a spherical surface separating two media:

v
n2   

u
n1  =

R
nn 12 

where light moves  from the medium of refractive index n1  to  the medium
of refractive index n2.

Transverse magnification (m) (of dimension perpendicular to principal axis)

due to refraction at spherical surface is given by   m =   Ru
Rv




 = 








1

2

n/u
n/v

13. Refraction at Spherical Thin Lens
A thin lens is called convex if it is thicker at the middle and it is
called concave if it is thicker at the ends.
For a spherical, thin lens having the same medium on both sides:

1

v
  

1

u
  = (nrel  1) 

1 1

1 2R R










     where nrel  = 

n

n
lens

medium
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1
f  = (nrel  1) 

1 1

1 2R R










1

v
  

1

u
  = 

1
f        Lens  Maker's  Formula

m = 
v

u

Combination Of Lenses:
1 1 1 1

1 2 3F f f f
   ...

OPTICAL INSTRUMENT

SIMPLE MICROSCOPE

 Magnifying power : 
0U

D

 when image is formed at infinity   
f
DM 

 When  change is formed at near print D. 
f
D1MD 

COMPOUND MICROSCOPE
Magnifying power Length of Microscope

e0

00

UU
DV

M  L = V0 + Ue

e0

0

fU
DV

M  L  = V0 + fe











e0

0
D f

D1
U
V

M LD =
e

e
0 fD

f.D
V



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Astronomical Telescope
Magnifying power Length of Microscope

M = 
e

0f
 L = f + ue.

e

0

f
f

M  L  = f0 + fe








 
D
f1

f
fM e

e

0
D LD= f0 + 

e

e

fD
Df


Terrestrial Telescope
Magnifying power Length of Microscope

e

0

U
f

M  L= f0 + 4f + Ue.

e

0

f
f

M  L  = f0 + 4f + fe.











D
f

1
f
f

M e

e

0
D LD = f0 + 4f + 

e

e

fD
Df


Galilean Telescope
Magnifying power Length of Microscope

e

0

U
f

M  L = f0 - Ue.

e

0

f
f

M  L  = f0 - fe.









d
f–1

f
fM e

e

0
D LD = f0 – e

e

f–D
Df

Resolving Power

Microscope   








sin2
d

1R

Telescope.  






22.1
a1R
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MODERN PHYSICS

 Work function is minimum for cesium (1.9 eV)

 work function W = h0 = 
0

hc


 Photoelectric current is directly proportional to intensity of incident radiation.
( – constant)

 Photoelectrons ejected from metal have kinetic energies ranging from 0 to
KEmax
Here KEmax = eVs Vs - stopping potential

 Stopping potential is independent of intensity of light used (-constant)
 Intensity in the terms of electric field is

I = 
2
1
0 E

2.c

 Momentum of one photon is 
h

.

 Einstein equation for photoelectric effect is

h = w0 + kmax 

hc

 = 
0

hc
  + eVs

 Energy E = )A(
12400

0 eV

 Force due to radiation (Photon) (no transmission)
When light is incident perpendicularly
(a) a = 1 r = 0

F = c
A

,   Pressure = c


(b) r = 1, a = 0

F = c
A2

, P = c
2

(c) when 0 < r < 1 and a + r = 1

F = c
A

 (1 + r), P = c


(1 + r)
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When light is incident at an angle  with vertical.
(a) a = 1, r = 0

F = c
cosA 

, P = 
A

cosF 
 = c


 cos2 

(b) r = 1, a = 0

F = 
c
cosA2 2 

, P = 
c

cos2 2 

(c) 0 < r < 1, a + r = 1

P = 
c

cos2 
 (1 + r)

 De Broglie wavelength

 = 
mv
h

= 
P
h

 = 
h

2mKE
 Radius and speed of electron in hydrogen like atoms.

rn = 
Z
n2

a0 a0 = 0.529 Å

vn = 
n
Z

v0 v0 = 2.19 x 106 m/s

 Energy in nth orbit

En = E1 . 2

2

n
Z

E1 = – 13.6 eV

 Wavelength corresponding to spectral lines


1

 = R 











 2

2
2
1 n

1
n
1

for Lyman series n1 = 1 n2 = 2, 3, 4...........
Balmer n1 = 2 n2 = 3, 4, 5...........
Paschen n1 = 3 n2 = 4, 5, 6...........

 The lyman series is an ultraviolet and Paschen, Brackett and Pfund series
are in the infrared region.

 Total number of possible transitions, is 
2

)1n(n 
, (from nth state)

 If effect of nucleus motion is considered,

rn = (0.529 Å)  
Z
n2

 . 
m

En = (–13.6 eV) 2

2

n
Z

 . 
m

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Here µ - reduced mass

µ = )mM(
Mm
 ,  M - mass of nucleus

 Minimum wavelength for x-rays

min = 
0eV

hc
 = Å

)volt(V
12400

0
 Moseley’s Law

v  = a(z – b)
a and b are positive constants for one type of x-rays (independent of Z)

 Average radius of nucleus may be written as
R = R0A

1/3, R0 = 1.1 x 10–15 M
A - mass number

 Binding energy of nucleus of mass M, is given by B = (ZMp + NMN – M)C2

 Alpha - decay process
HeYX 4

2
4A
2z

A
Z  



Q-value is
Q =        24

2
4A
2z

A
Z CHemYmXm  



 Beta- minus decay


  YX A
1z

A
Z

Q- value = 2A
1Z

A
z c)]Y(m)X(m[ 

 Beta plus-decay

XA
z    YA

1Z  + + + 

Q- value = 2A
1Z

A
z c]me2)Y(m)X(m[  

 Electron capture : when atomic electron is captured, X-rays are emitted.

XA
z  + e      YA

1Z  + 

Q - value  = 2A
1Z

A
z c)]Y(m)X(m[ 

 In radioactive decay, number of nuclei at instant t is given by N = N0 e
–t ,

-decay constant.

 Activity of sample : A = A0 e
–t

 Activity per unit mass is called specific activity.

 Half life : T1/2 = 

693.0

 Average life : Tav = 693.0
T 2/1
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 A radioactive nucleus can decay by two different processes having half
lives t1 and t2 respectively. Effective half-life of nucleus is given by

21 t
1

t
1

t
1

 .

WAVE OPTICS
Interference of waves of intensity 1 and 2 :
resultant intensity,  = 1 + 2 + 212   cos () where,  = phase
difference.

For Constructive Interference : max =  221 

For Destructive interference : min =  221 
If sources are incoherent  = 1 + 2 , at each point.
YDSE :
Path difference, p = S2P – S1P = d sin 

if d < < D = 
D
dy

if y << D
for maxima,
p = n  y = n n = 0, ±1, ±2 .......
for minima

p = p = 




















3........- 2,- -1,n
 2

)1n2(

....3......... 2, 1,  n 
2

)1n2(

   y = 




















3.......- 2,- -1,n
 2

)1n2(

....3......... 2, 1,  n 
2

)1n2(

where, fringe width  = d
D

Here,  = wavelength in medium.

Highest order maxima : nmax = 





d

total number of maxima = 2nmax + 1

Highest order minima : nmax = 



 
 2

1d

total number of minima = 2nmax.
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Intensity on screen :  = 1 + 2 + 212   cos () where,  = p2





If 1 = 2,   = 41 cos2 





 

2
YDSE with two wavelengths 1 & 2 :
The nearest point to central maxima where the bright fringes coincide:

y = n11 = n22 = Lcm of 1 and 2

The nearest point to central maxima where the two dark fringes
coincide,

y = (n1 – 
2
1

) 1 = n2 – 
2
1

) 2

Optical path difference
popt = p

 = 

2

 p = 
vacuum

2



  popt.

 = ( – 1) t. d
D

 = ( – 1)t 

B

.

YDSE WITH OBLIQUE INCIDENCE
In YDSE, ray is incident on the slit at an inclination of 0 to
the axis of symmetry of the experimental set-up

     

1

P1

P2

B0O'

S2
dsin0

S1

O0
2

We obtain central maxima at a point where, p = 0.
or 2 = 0.

This corresponds to the point O’ in the diagram.
Hence we have path difference.

p = 













 O'below  points for)sind(sin
O'&O between points for)sin(sind

O above points for)sin(sind

0

0

0

... (8.1)
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THIN-FILM INTERFERENCE
for interference in reflected light 2d

= 










ceinterferen veconstructifor)
2
1n(

ceinterferen edestructivforn

for interference in transmitted light 2d

= 










ceinterferen edestructivfor)
2
1n(

ceinterferen veconstructiforn

Polarisation

    = tan   .(brewster's angle)
  + r = 90°(reflected and refracted rays are mutually
perpendicular.)

 Law of Malus.
I = I0 cos2

I = KA2 cos2

 Optical activity

 
CLCt 


 



  =  rotation in length L at concentration C.

Diffraction
 a sin  = (2m + 1) /2  for maxima. where m = 1, 2, 3 ......

  sin  =  
a

m
,  m =   1,   2,   3......... for minima.

 Linear width of central maxima =  
a
d2 

 Angular width of central maxima = a
2



Page # 73


2

0 2/
2/sin











   where    =  


 sina

 Resolving power .

R =  







12 –

where ,  
2

21 
  ,    =  2 -  1

GRAVITATION
GRAVITATION : Universal Law of Gravitation

F  2
21

r
mm

 or F = 2
21

r
mmG

where G = 6.67 × 10–11 Nm2 kg–2 is the universal gravitational constant.

Newton's Law of Gravitation in vector form :

12F


 = 2
21

r
mGm

 12r̂       &  12F


 = 2
21

r
mGm

    

Now 2112 r̂r̂    , Thus 122
21

21 r̂
r

mmGF 



.

Comparing above, we get 2112 FF




Gravitational Field E = 
m
F

 = 2r
GM

Gravitational potential : gravitational potential,

V = – 
r

GM
.  E = – 

dr
dV

.

1. Ring. V = 2/122 )ra(orx
GM



   &   E = r̂

)ra(
rGM

2/322 



or  E = – 2x
cosGM 
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Gravitational field is maximum at a distance,

 r = ± 2a  and it is – 2a33GM2
2. Thin Circular Disc.

 V =  














rra

a
GM2

2
1

22
2    &   E = – 

  


















2
1

22
2

ar

r1
a
GM2

 = –   cos1
a
GM2

2

3. Non conducting solid sphere
(a) Point P inside the sphere.  r < a, then

V = )ra3(
a2

GM 22
3   & E = – 3a

rGM
, and at the centre V = – 

a2
GM3

 and E = 0

(b) Point P outside the sphere .

r > a, then   V = 
r

GM
      & E = – 2r

GM

4. Uniform Thin Spherical Shell / Conducting solid sphere
(a) Point P Inside the shell.

r < a , then V = 
a
GM

& E = 0

(b) Point P outside shell.

r > a, then  V = 
r
GM

& E = – 2r
GM

VARIATION OF ACCELERATION DUE TO GRAVITY :
1. Effect of Altitude

gh =  2e

e

hR
GM
 = g 

2

eR
h1











  ~    g 










eR
h21  when h << R.

2. Effect of depth gd = g 









eR
d1

3. Effect of the surface of Earth
The equatorial radius is about 21 km longer than its polar radius.

We know, g = 2
e

e

R
GM

 Hence gpole > gequator.

SATELLITE VELOCITY (OR ORBITAL VELOCITY)

v0 =  
2
1

e

e

hR
GM











 =   
2
1

e

2
e

hR
Rg














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When h << Re  then v0 = eRg

 v0 = 6104.68.9   = 7.92 × 103 ms–1 = 7.92 km s1

Time period of Satellite

T = 
 

 
2
1

e

2
e

e

hR
Rg

hR2
















  = 

  2
1

3
e

e g
hR

R
2











 

Energy of a Satellite

U = 
r

mGMe
 K.E. = 

r2
mGMe  ; then total energy E = – 

e

e
R2

mGM

Kepler's Laws
Law of area :
The line joining the sun and a planet sweeps out equal areas in equal
intervals of time.

Areal velocity   = 
time

sweptarea
= dt

)rd(r
2
1


 =7 

2
1

 r2 
dt
d

 = constant .

Hence 
2
1

 r2  = constant.  Law of periods : 3

2

R
T

 = constant

FLUID MECHANICS & PROPERTIES OF MATTER
FLUIDS, SURFACE TENSION, VISCOSITY & ELASTICITY :

1. Hydraulic press. p = f
a
AFor

A
F

a
f

 .

Hydrostatic Paradox PA = PB = PC
(i) Liquid placed in elevator :  When elevator accelerates upward with
acceleration a0 then pressure in the fluid, at depth ‘h’ may be given by,

p = h [g + a0]

and force of buoyancy, B = m (g + a0)      

(ii) Free surface of liquid in horizontal acceleration :

tan  = g
a0
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p1 – p2 =  a0   where p1 and p2 are pressures at points 1 & 2.

Then h1 – h2 = g
a0

(iii) Free surface of liquid in case of rotating cylinder.

h = g2
v2

 = g2
r22

Equation of Continuity

a1v1 = a2v2

In general av = constant .

Bernoulli’s Theorem    

i.e. 
P

 + 
2
1

 v2 + gh = constant.

(vi) Torricelli’s theorem – (speed of efflux) v=
2

1

2
2

A
A1

gh2

 ,A2 = area of hole

A1 = area of vessel.

ELASTICITY & VISCOSITY : stress = A
F

bodytheofarea
forcerestoring



Strain,  = ionconfiguratoriginal
ionconfiguratinchange

(i) Longitudinal strain = 
L
L

(ii) v  =  volume strain = 
V
V

(iii) Shear Strain : tan  or  = 


x

1. Young's modulus of elasticity Y = 
LA

FL
L/L

A/F





Potential Energy per unit volume = 
2
1

(stress × strain) = 
2
1

 (Y × strain2 )

Inter-Atomic Force-Constant k = Yr0.
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Newton’s Law of viscosity,  F  A dx
dv

  or   F = – A  dx
dv

Stoke’s Law F = 6 r v. Terminal velocity = 9
2

 

 g)(r2

SURFACE TENSION

Surface tension(T) = )(linetheofLength
)F(lineimaginarytheofeitheronforceTotal

  ;

T = S = 
A
W

Thus, surface tension is numerically equal to surface energy or work
done per unit increase surface area.

Inside a bubble : (p – pa) = 
r
T4

 = pexcess ;

Inside the drop : (p – pa) = 
r
T2

= pexcess

Inside air bubble in a liquid :(p – pa) = 
r
T2

= pexcess

Capillary Rise h =
gr

cosT2




SOUND WAVES
(i) Longitudinal displacement of sound wave

 = A sin (t – kx)
(ii) Pressure excess during travelling sound wave

Pex = x
B



  (it is true for travelling

=  (BAk) cos(t – kx)
wave as well as standing waves)
Amplitude of pressure excess = BAk

(iii) Speed of sound C = 
E

Where E = Ellastic modulus for the medium
 = density of medium

– for solid C = 
Y
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where Y = young's modulus for the solid

– for liquid C = 
B

where B =  Bulk modulus for the liquid

– for gases C = 
0M

RTPB 








where M0 is molecular wt. of the gas in (kg/mole)
Intensity of sound wave :

<> = 22f2A2v = v2
P2

m


<  >   Pm

2

(iv) Loudness of sound : L = 










0
10log10 dB

where I0 = 10–12 W/m2 (This the minimum intensity human ears can
listen)

Intensity at a distance r from a point source = 2r4
P




Interference of Sound Wave
if P1 = pm1 sin (t – kx1 + 1)

P2 = pm2 sin (t – kx2 + 2)
resultant excess pressure at point O is

p = P1 + P2

p = p0 sin (t – kx + )

p0 =  cospp2pp
2121 mm

2
m

2
m

where  = [k (x2 – x1) + (1 – 2)]

and I = I1 + I2 + 212 
(i) For constructive interference

 = 2n   and      p0 = pm1 + pm2 (constructive interference)
(ii) For destructive interfrence

 = (2n+ 1) and     p0 = | pm1 – pm2 | (destructive interference)

If  is due to path difference only then  = 

2
x.

Condition for constructive interference : x = n

Condition for destructive interference : x = (2n + 1)
2
 
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(a) If pm1 = pm2 and 
resultant p = 0 i.e. no sound

(b) If pm1 = pm2 and   = 0 , 2, 4, ...
p0 = 2pm & I0 = 4I1
p0 = 2pm1

Close organ pipe :

f = 
 4

v)1n2(.,.........
4
v5,

4
v3,

4
v 

n = overtone

Open organ pipe :

f = 
 2

nV.,.........
2
v3,

2
v2,

2
v

Beats : Beatsfrequency = |f1 – f2|.
Doppler’s Effect

The observed frequency, f = f 










s

0

vv
vv

and   Apparent wavelength  =  






 
v
vv s

ELECTRO MAGNETIC WAVES
Maxwell's equations

  0/QdAE (Gauss's Law for electricity)

  0dAB (Gauss's Law for magnetism)





dt
d–

dE B (Faraday's Law)

dt
d

idB E
00c0


  (Ampere-Maxwell Law)

Oscillating electric and magnetic fields
E= Ex(t) = E0 sin (kz - t)

= E0 sin 
















 vt–z2 = E0 sin 

















T
t–z2

E0/B0 = c

c = 00/1  c is speed of light in vaccum

 /1v v is speed of light in medium
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c
Up   energy transferred to a surface in time t is U, the magnitude of

the total momentum delivered to this surface (for complete
absorption) is p
Electromagnetic spectrum

Type Wavelength 
range 

Production Detection 

Radio > 0.1m Rapid acceleration and 
decelerations of electrons in 
aerials 

Receiver's aerials 

Microwave 0.1m to 1mm Klystron value or magnetron 
value 

Point contact diodes 

Infra-red 1mm to 700nm Vibration of atoms and 
molecules 

Thermopiles Bolometer, 
Infrared photographic 
film 

Light 700nm to 
400nm 

Electrons in atoms emit light 
when they move from one 
energy level to a lower 
energy 

The eye, photocells, 
Photographic film 

Ultraviolet 400nm to 1nm Inner shell electrons in 
atoms moving from one 
energy level to a lower level 

photocells photographic 
film 

X-rays 1nm to 10–3 nm X-ray tubes or inner shell 
electrons 

Photograpic film, Geiger 
tubes, lonisation chamber 

Gamma 
rays 

< 10–3nm Radioactive decay of the 
nucleus 

do 

ERROR AND MEASUREMENT

1. Least Count
  

mm.scale 
L.C =1mm

Vernier 
L.C=0.1mm

Screw gauge 
L.C=0.1mm 

Stop Watch 
L.C=0.1Sec 

Temp thermometer
L.C=0.1°C 

2. Significant Figures
 Non-zero digits are significant
 Zeros occurring between two non-zeros digits are significant.
 Change of units cannot change S.F.
 In the number less than one, all zeros after decimal point and to
the left of first non-zero digit are insignificant
 The terminal or trailing zeros in a number without a decimal
point are not significant.
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3. Permissible Error
 Max permissible error in a measured quantity = least count of
the measuring instrument and if nothing is given about least count
then Max permissible error = place value of the last number
 f (x,y) = x + y     then   (f)max = max of (  X  Y)

f (x,y,z) = (constant) xa yb zc  then
maxf

f






 

= max of  






 








z
zc

y
yb

x
xa

4. Errors in averaging
 Absolute Error    an = |amean -an|

 Mean Absolute Error amean =   n|a|
n

1i
i 













 Relative error =  
mean

mean

a
a

 Percentage error = 
mean

mean

a
a

×100

5. Experiments
 Reading of screw gauge














































count
Least

reading
scale
circular

reading
scale
main

gaugescrewofadingReobjectofThicknes

 least count of screw gauge = divisionscalecircularof.No
pitch

 Vernier callipers














































count
Least

reading
scale
vernier

reading
scale
main

callipervernierofadingReobjectofThicknes

Least count of vernier calliper = 1 MSD –1 VSD
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PRINCIPLE OF COMMUNICATION

Transmission from tower of height h

  

 the distance to the horizon dT = T2Rh

 dM = T R2Rh 2Rh

Amplitude Modulation
 The modulated signal cm (t) can be written as

cm(t) = Ac sin ct +
cA

2


cos (C -  m) t – cA
2


cos (C + m)

 Modulation index 
m

a
c

kAChange in amplitude of carrier wavem
Amplitude of original carrier wave A

 

where k = A factor which determines the maximum change in the
amplitude for a given amplitude Em of  the modulating. If k = 1 then

ma =   
max minm

c max min

A – AA
A A – A



 If a carrier wave is modulated by several sine waves the total modulated

index mt is given by mt = 2 2 2
1 2 3m m m .........  

 Side band frequencies
(fc + fm)  = Upper side band (USB) frequency

            (fc - fm)   = Lower side band (LBS) frequency

 Band width  = (fc + fm) - (fc - fm)  = 2fm

 Power in AM waves :
2
rmsV

P
R



(i) carrier power 

2
c

2
c

c

A
A2P

R 2R

 
 
  
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(ii)   Total power of side bands  Psb = 

2
a c a c

2 2
a c

m A m A
m A2 2 2 2

R 2R 4R

   
   
    

(iii)  Total power of AM wave PTotal = Pc + Pab =
2 2
c aA m

1
2R 2

 
  

 

(iv)  
2

t a

c

P m
1

P 2
 

   
 

  and 
2

sb a
2

t a

P m / 2
P m

1
2


 
  

 

(v) Maximum power in the AM (without distortion) will occur when
ma = 1 i.e., Pt = 1.5 P = 3Pab

(vi) If Ic = Unmodulated current and It = total or modulated current


2

t t
2

c c

P
P



  

2
t a

c

m
1

2
 

     

Frequency Modulation

 Frequency deviation  =   = (fmax - fc) = fc - fmin = kf . 
mE

2
 Carrier swing (CS) = CS = 2 × f
 Frequency modulation index (mf)

=. mf = 
max c c min f m

m m m m

f – f f – f k E
f f f f


  

 Frequency spectrum = FM side band modulated signal consist of infi-
nite number of side bands whose frequencies are  (fc ± fm), (fc ± 2fm),
(fc ± 3fm).........

 Deviation ratio = 
max

m max

( f )
(f )


 Percent modulation , m = 
actual

max

( f )
( f )


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SEMICONDUCTOR

Conductivity and resistivity
 P (– m) (–1m–1)
Metals 10–2 -10–6 102 – 108

semiconductors 10–5 -10–6 105 – 10–6

Insulators 1011 –1019 10–11 – 10–19

Charge concentration and current
[ n =  e] In case of intrinsic semiconductors
 P type n >>  e
 i = ie + ih
 e  n = 2

i
 Number of electrons reaching from valence bond to conduction bond.
= kT2/Eg–2/3 eTA (A is positive constant)
  = e ( e me +  n  n)
for   hype  n = Na >>  e.
for  – type  e = Na >>  h

 Dynamic Resistance of P-N junction in forward biasing  =  

V

Transistor
 CB amplifier

(i) ac current gain  c = )i(currentcollectorinchangeSamll
)i(currentcollectorinchangeSamll

e

c




(ii) dc current gain dc = )i(currentEmitter
)i(currentCollector

e

c
  value of  dc lies

between 0.95 to 0.99

(iii) Voltage gain AV = )V(voltageinputinChange
)V(voltageoutputinChange

f

0




AV = aac × Resistance gain

(iv) Power gain = )P(voltageinputinChange
)P(poweroutputinChange

C

0




 Power gain = a2
ac × Resistance gain

(v) Phase difference (between output and input) : same phase
(vi) Application : For High frequency
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CE Amplifier

(i) ac current gain ac = 










b

c

i
i

 VCE = constant

(ii) dc current gain dc = b

c

i
i

(iii) Voltage gain : AV =  
i

0

V
V



=  ac × Resistance gain

(iv) Power gain = 
i

0

P
P



 =  2ac × Resistance

(v) Transconductance (gm) :  The ratio of the change in collector in
collector current to the change in emitter base voltage is called trans

conductance i.e. gm = 
EB

c

V
i




 . Also gm =  
L

V

R
A

 RL = Load resistance.

 Relation between   and   :  





–1
 or   = 


1

(v) Transconductance (gm) :  The ratio of the change in collector in collec-
tor current to the change in emitter base voltage is called trans conductance
i.e. gm =  . Also gm =  RL = Load resistance.




